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Abstract- -As a continualion of the previous paper, dynamics r rigid and flexible polymer chains in 
visc~,us medium was reexamined iv, ,arder to i~.clude the interacti,.m os bc, unda~" and polymer challis. As 
mt,dels fiJr rigid and flexible chains, rigid and linear elastic: dumbbells were considered, which are essential- 
ly cc, mpr ,af two beads of frictional sources. The orientation distribution function was ,abtained by in- 
cluding anist)lropic diffusivities of the bead due to the presence of the walls, and theological properties were 
predicted to give us the dependence on an additional parameter, ~0h relative size of bead to the gap width. 
as expecled Dynamics of flexible polymer chains showed a similar dependence on the relative size of bead. 
but exhibiled nt> dependence ~m the shear rate as tbe case of no bt~undaries. 

INTRODUCTION 

In the previous paper [1], dynamics of rigid and 
flexible polymer chains in viscous Newtonian fluid was 
presented in case of simple shear flow between two 
parallel plates, and applied to obtain the rheoIogical 
properties of such solution for any size of channel gap 
compared with that of polymer chains. One of most im- 
porlant feature of Rigid Dumbbell(hereafter called R.D.) 
solution in lhat paper is that a distribution function 
which describes the motion of R.D. polymer chain can 
be cr frt)nl the unbounded distribution func- 
ti(m when no boundary exists. 

At that time, however, the boundaries were simply 
taken as a solid wall through which both solvent and 
polymer can not penetrate so that there assumed no 
change in flow characteristic after introducing the 
boundaries. It is well-known, however, that such boun- 
daries alter the diffusivity of the finite size of particles 
due to the change of friction exerted by fluid. Hydro- 
dyi:amics [2,3,4, and 5] tells us that the frictional force 
exerted by fluid rises up tremendously as a particle ap- 
proaches boundaries. Furthermore, there wotild be an 
anisotropic increase of such frictional drawl when a par- 
title moves toward the boundary, or aong it. This 
anisotropy can cause new kind of dynamics as far as 
po[?'mer is concerned. 

This phenomenon is called "wall-bead hydrodyna- 
mic interaction". It is possible to consider another kind 
of hydrodynamic interaction if we deal with the finite 

size of bead of which polymer chains are composed. 
That is the bead-bead interaction which was extensive- 
ly studied by from Kirkwood [61 to Bird et al.[7] in case 
of unbounded media, and it made the shear thinning 
rate in the rheological properties less than that of no in- 
teraction and decreased the flow effect by increasing 
H~e relaxation .time of R.D.. This interaction can be 
characterized by the relative length of R.D. 

h - d / L  (1) 

where d is diameter of bead and L is length of R.D.. As 
a first approximation, interaction effect is of order h 
when h is small enough. On the other hand, wall-bead 
interaction can be characterized by the factor how often 
the polymer chain can be located near the boundary, 
because in that region the frictional force increases 
tremendously. This factor can be quantitized by h and 

f'0 

~ ~ L /  I (2) 

where l is channel gap of the boundaries. It turned out 
that for small cob the interaction effect in averaged dif- 
fusivity of the polymer chain is of order %h ln(~0h) 
which is greater than order of eoh. Therefore bead-bead 
interaction can be neglected if e0 is greater than unity. 
Furthermore if ~0 is not too small compared to 1, then 
wall-bead in teac t ion  could be dominant,  provided that 
h is small. In this paper, l will restrict myself to the topic 
of wall-bead interaction by ignoring bead-bead interac- 
tion entirely. In chapter II, kinetic theory for R.D. model 
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polymer in confined geometries will be developed and 
then applied to the specific case namely the case of sim- 
ple shear flow between two parallel plates. ]n chapter 
llI. anisotropic factor will be determined in the sense of 
preaveraging by utilizing the hydrodynamic results 
about the frictional drag near the wall. After discussing 
the results of R.D., in chapter IV, Linear Elastic Dumb- 
bell(hereafter called as E.D.) will be analyzed with the 
same line used before [1]. 

KINETIC EQUATION FOR R.D. 

The model used here is that- of rigid dumbbell pic- 
tured in Figure 1 which was the same as used before 
l I 1. The only difference arises from the factor that each 
head has a finite size so that it allowes us t .  consider 
the wall-bead hydrodynamic interaction effect. The 
kinetic equation for the orientation distribution func- 
tion which governs the motion of R.D. chain can be 
derived from the force balances to exerted to each bead 
by neglecting acceleration terms. 

0 =~ ' I r~)([ '~-v)}-I  k T ~ r  ln r  for j = l , 2  (3 

Here,(r,  i s  a diagonal tensor in general which is noh- 
dimensionalized by where ~'0 is a the Stoke's friction 
factor, and y, is a bead velocity which is determined 
by the macroscopic velocity field. _r, 's are the position 
vectors of each bead. kT is the Boltzman temperature. 
After defining A - [ ~ ! _ r , ) -  [ ( D ) ] / 2  and__B={(_r,) 
-~"z.,)and assuming (he homogeneous velocity field 
F .  the following sets of equation can be derived. 
= 

4 A ' , ~ ' ~ - F - r ~ - I + B ( ~ ' - F ' r ) + 2 k T ' ~  1 r  

(4) 

Z 

/ X 

Fig. 1. The rigid dumbbell  model.  

2kT OInr 0 5t 
=B(~-_<.>:,+IA=',~-_D~I L:0 a o  

B { f . , . - l ' . r ~ )  + FA(f. F. r )  2-k-T- O~lnr = 0  
= -  = - -::- =- Lr ar 

{6t 

where re= (E, ; r2)/2 and E='E~-r_~.and S and C 
denote sing, ahd cos r respectively, and small s and c 
will denole sin0 and cos0 later. 6"o and 6~ and the unit 
vectors al({ng 0 and r direction, respectively. Once 
we have 0 and $ from equations (5) and (6) and_~,. 
Iron] equatk)n (4), it is easy to construct the kinetic 
equation for R.D. from the conse~ation of prubabiIity 
in space where polymer chains can be located. 

ar i a(sf)r a,:r162 a~cr 0 (7) 
a t  s O0 0r  Or,: 

Details are the same as in the textbook of Bird et al. [8]. 
It is hard to obtain 0, ,~ and ~,: in general from the 
equation (4)-(6). Now let us apply to the specific case, 
namely, the case of simple shear flow between two 
parallel plates as shown in Figure 2. External flow field 
is given by the following velocity gradient tensor. 

0 !) 
l ' :  a 0 0 18) 

= <0 0 

Then we have 

l + A s  ~ [), l §  ~ O0 

B3 Dr 1 OInr 
+ r 1 7 6  D~ l + X s  ~ Oz~ (9) 

$= - a c S _  1 D,-. cgln<,b (10) 
s s 2 DI 0 r 

o B, e o d -  e~ D,. Olnr (11) 
zc=4-~-3 T "  AT" az~ 

where DI=A1-B ~, D3=Aa-B~,and A=(Da-DI)/D>A , 
and B, are tile diagonal elements of tensor A and B, and 
D i turned out to be the harmonic averages of the 

Z 

X 

, V=a  Z 

Fig. 2. The flow geometry. 
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diagonal elements o f f ( r ,  )and ~(_r=). D~ is the rotational 
diffusivity of R.D. which is given by 2kT/t'0L ' can be 
called the anisotropic factor in the diffugivity. By in- 
troducing the concept of preaveraging, B:~ terms can be 
neglected and then after integrating over x c and y~, we 
have 

] 9 ~ r 1 6 3 1 6 2  r162 4 ~ azg 0 (12) 

where 
c 'C  S' cS ~) 

"c2 = 1 -  AsZ r s ~ r  

3 , '1-  a ) c s C  ( l + h s ' / 3 )  
- (1 4 - X s  ~ } ~ (131t 

1 c9 s O 1 O = 
A ' i + - - -  : i 4 )  

s O 0 1 1 + a s  ' 0 0 "  s ' c9r 

,6' {15) 
D,-< l /D ,  > 

subject to the no flux boundary condition of each bead 
and the normalization condition of the total probability. 
One different thing is that length was scaled by 

the !actor (1-~oh) further than before [:1]. So hereafter 
means ~0/(f-e~h). This is the simply the extrusion ef- 
fect of bead. Normalization condition looks like exactly 
same as before except modified definition of. 

1 I,;b ) = 1 (16) 

1 - - i 1 - . ) / ;  d t f o ' ~ d ~ + e - f o  ' dtof__[2 d t f ' ~ d ~  

N 1 (17;, 

f0' f ; ]  dt J ] "  1 =  e dto d e  ~ > 1 (18) 

For steady simple shear flow we have already known 
that z c dependence can be neglected with the no-flux 
boundary condition with the same argument used 
before [1]. It means that the wall can be felt by polymer 

chains only when they reach the wall provided that no 
adsorption ot polymer occurs on the wall Solution of 
equation (12) can be expressed as following 

where 
1 

~ 2zr (2-  e) ~ < 1  

(19) 

(20) 

= 2~-  ~ > 1 (21) 

and 

f (e , ,8 )  = 1 / ( 1 + 2 :  ( ~oa~ (1> r  e--~ 1 (22) 

= ~ .  g,~(,~ ),8 '~ ,e >1  !23; 

% (1) and gk ('~) are given by equation (26) and 
(?,0)-(31), later. 

The basic solution r has a general form as follow- 
ing 

,~,,, = X E (k,, i, j ) P, ,  :~' 2' Ca, = ,24 : 
* = 1  j = ~  

v O(k , i , j )  P~_~ C ~ . ,  (25i 

where the coefficients E(k,i,j) and O(k,i,j) are now func- 
tions of A First four ~ ' s  are given in Appendix for 
reference. We can use the same definition of ak(~), 
b~(~), %(~), K(,',v e~(~) and g,~(,~/of the previous paper by" 
using the modified definit ion of ~ 

a , , ( ~ ) =  2: E ( k , l , j ) K g  ...... ~(~) (26) 
J=l 

2,~,- l 
b , , (E )=  X E ( k , I , j ) K ~  . . . .  (~) (27) 

J=l 

c,, (e) = =_~+' ' , O (k, 1, j)K .... I~ I (28} 
j=l 

f 0  1/r / [ o  K~ . . . .  (~) = t ~ dt, dtP~, (t)P~,- (t) ~291 
to 

g w , ( ~ ) = -  ~ a . . . .  ( r  , (~ )  k > l  (30 
2=1 

go (~) = 1 1311 

Then it is straightforward to obtain the rheological 
properties: 

~ - - 1  
no kT 1 - 3 ~/4 

7;*) '~=~ 1 -  e / 2  
(32) 

(7; - rl,) f ('~, 5)  11~- 1 
(rl - r~s) ,,=o 1 - 3 ~ / 4  ~ (1 

4- 2 (1 - e ) E (k, 1, 21 4 ~ b,, (1)],8 ~"/ 
5 

(33) 

nokT 14-3. 1 - 5 ~ / 8  
4"~=~ 3 0 D ' , - < I / D , > '  1+ A/2 " 1 -  r  (34) 

r  
- - 7 ~ =  f (~, ,8){1 l + a  1 ,,? 
r - l + . a / ~  " 1 - 5 ~ / 8  ~ .... 

6 (1 -  �9 ) O (k, 1, 1) +5~ c~, (1)1.8 '"/ (35) 

e > l  

no kT 1 
(7; - r~.),,=o = 6 D , . < I / D ,  > " 2e 2 q36) 

K o r e a n  J.  C h . E . ( V o l . 4 ,  N o . l )  
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~,r? - r/s] ~=o " ~=1 
<37 ) 

n0kT 1+ A 5 1 
r 1 7 6  (4~' 2-~'" 

(38) 

~ = f ( � 9  c~( �9  (39) 

Therefore  it is clear that in order  to consider  the 
wall-bead interaction effect, we need modified concept  
of �9 with h, .x. , and  D~. These  ~ and  Dr are also func- 
tions of �9 and  h so that in fact we need only one  addi- 
tional parameter  b like the case of bead-bead  interac- 
tion. Next chapter  will be devoted to de te rmine  X and  
D~ for given �9 and  h. 

X AND D1 FOR R.D. 

For the preaveraging friction factor, the bead con- 
centra t ion profile and  the functional  form of frictional 
factor are needed.  From the distr ibut ion function given 
in equat ion  (19), bead concent ra t ion  profile can be easi- 
ly obtained.  

�9 -:-~ 1/2 

for 1 / 2 -  �9 < Iz, 1"<1/2 

C(z~l  f ( e ' f l ) [ l + t o ~  ,82~G,lto',:L)] (40a) 

for 0 < [ z , 1 < 1 / 2  - �9 

C ( z , )  f ( � 9  (40b} 
2 - e  

1 / 2 " < � 9  ~ 1  

for 0 < l z ~ l _ ~ e - 1 / 2  

C ( z , )  f ( � 9  ~ 2-7 ~z, ~'~Ic~(t~ 
- G ~  I t o -  1 / � 9  ; X ) ]  

for e - 1 /2~-  I z , [ ~ l / 2  

C ( z , )  f { e , f l )  [ l § 2 4 7  f l 2*G, ( t o ;~ , ) ]  
2 - � 9  ~=1 

(40c) 

(40d) 

� 9  

C I z , ) = e ' f ( ~ , 5 )  { ~ # " ~ [ G , , ( t o ; Z )  

- G , , ( t o -  1 / � 9  ; s  (40e) 

whe re  � 9  and 

t a t  E (k, 1, j )P~ j  2(t)  (41) G ~ ( t ; X ) =  ,S 
j = I  

For the mathemat ica l  simplicity, the equi l ibr ium profile 
was  used here  so that it would be said to be "equilibri-  

T a b l e .  1. Dimensionless  force on a sphere moving 
p a r a l l e l  to a p l a n e  ~-all [ 3 ,41 .  

y s 3 ~ ) eq. ~42a) eq. q2b )  

9. 0677 1. 0591 - 1. 0592 

2. 7622 1. 1738 1. 17138 

1. 3524 1. 3079 - 1.31,13 

0. 5431 1. 5675 I. 2844 1. 5736 

0. 1276 2. 1314 2. 0569 1.99!54 

O. 0453 2. 6475 2. 6092 2. 16151 

O. 0050 3. 7863 3. 7841 2.27'72 

O. 0032 4. 0223 4. 0223 2. 28137 

um averaged hydrodynamic  interaction".  In quali tat ive 
sense, it could give tile right answer.  Next thing we 
need is the specific friction factor. Bremmr eta] .  112,3,4, 
and  5] reported tbe variable  friction factor for the single 
sphere  near  a solid boundaD'  in their  series of papers. 
The  results were quoted here  in Table l and Table 2. 
Both exact results and appruximate  values obta ined the 
following furmu[ars are tabulated and  for the computa-  
tional purpose the following funct ions were chosen  for 
each case. 

~ ~ ) ~ - ~ 5  In-e+0"9588 ~ < 0 . 1 5 7  (42a) 

~', ( ~ ) = 1 / [ 1  9 
1 6 ( 1 ~ s  e) ] se>O. 157 (42b) 

{a(~)=l/(  tO. 21n (1 /~ )  ~0 .9713  

~ 1 .  839 (43a) 

T a b l e  2. Dimensionless  force on a sphere m o -  

ving perpendicular to a plane wal l~2 ,  

5] .  

,~ {'3 (~) eq. (43a) eq. ,213b) 

9. 0677 1. 1253 - 1. 1258 

5. 1323 1. 2220 - 1. 2247 

2. 7622 1. 4129 - 1. 4266 

1. 3524 1. 8375 - 1. 9166 

O. 5431 3. 0361 2. 9347 - 

O. 1276 9. 2518 9. 2201 - 

O. 0201 51. 594 51. 500 - 

O. 0050 20[. 86 202.57 - 

O. 0013 802. 15 802.31 - 

is re la t ive  gap be tween  bead and plane wail divid- 
ed by lhe  d i ame te r  of the bead.  

March, 1987 



Dynamics of Rigid and Flexible Po lymer  Chains in Confined Geometries 4 l 

9 
~a(~ :~: 1/{1 . . . .  ] f > 1 . 8 3 9  (43b) 

8 f l u s  e ) 

Here direction ' 1 "  means x direction parallel to the 
boundary and "3" means the perpendicular direction z. 
Since two beads are identical, 

�9 < l / D ,  > - < 1/~'~ '.z, ', > (44a) 

< l / D ,  > = < 1/~'3 (z,) > t44b~ 

Here < > means an average over all possible configura- 
tion,; of polymer chains. And we have two walls to be 
considered, so that we simply assumed thai the effects 
due to two walls could be multiplied to give us the 
who e effects. Then we have the following expression 
f,~r <I /D~;> aud < I l D ~ >  which can I),. integraled 
umverically. 

t < t / 2  

< I / D , >  F', ( e h ) / ( 1 -  e / 2 ) -  e B, I~, h ) / ( 2 -  ~ ) 

i45a) 

1/2 ~- s < 1  

<'.I/D,>-F,(eh)/~ ( 2 - ~ ) ] -  --- 
2 - ( :  

(B, (e, h ) -  13~(e, h))  (45bJ 

<7 I / D I  > I'�9 (el l)  ('1or 

where 

F~ x ) = l S " d y [ ~ ,  l,,)tT~{2x_v ) ] l  146ai 

h S a / h  2 - h y  > (,16b) B, ,:e, h) - - ~  dy [~ . , ; y )~ .  ( 2 ~ h - y )  ' 

h j0 
,2~ h . 2 - h v  

B ~ ' ~ , l i ; = - 9  dy " - ! (,i6c) 

Nov,' it is clear that we need one more parameter h i n  

order to consider the wall-bead interaction effect. <71/ 
D:~>  can be oblained by sin41ar method with gs{y)in- 
s tead  of  ~': ' ,y;- 

R E S U L T S  F O R  R.D.  

Wall llydrodynamic effect in diffusivity is calculated 

nmnericalty and plotted in Figure 3 in forms of 

1/<I/DI;>, li<71/D 3 ".> and X. As expected. X is an in- 

creasing functiun ()f , and in both h - 0.1 0.2 linear rela- 

tionship between 2, and ~ holds as shown in Figure 3. 

Relalive size effect on zero shear viscosity is plotted in 

Figure 4. One maximum is predicted near ~: 1. It is clue 

to the increase of the frictional resistance exerted by fluid 

with the presence of the wall, and anisotropy 7, is also 
responsible for the increase of zero shear properties. 

~ .5 '  

9 

1. 
1 1 

. / -  c. h . '2 
. .__-- - - -  c. h . 1 

�9 0 , , ~ c, 0 
.0  1. 2. 2.5 

E 
F i g .  3. (a) l / <  l /D ,  > ,  (b) l / <  l /Da > ,  and  (c) k 

a s  f u n c t i o n s  of ~ w i t h  the  p a r a m e t e r  h 

for R. !).. 

1.5 

. 9  

.0 
.0 

Fig. 4. 

a, h .0 

IF 
Ca) F i r s t  Normal  S t r e s s  C o e f f i c i e n t  and 

fb) S h e a r  V i s c o s i t y  a t  z e r o - s h e a r  rate  

n o r m a l i z e d  by t h o s e  w i th  no b o u n d a r y  

a s  f u n c t i o n s  of e w i t h  p a r a m e t e r  h for 

R . D . .  

Both viscosity and first normal stress difference have 
substantial dependence on the relative thinkness(here 
h) of polymer chains compared with their length. In 
Figure 5, weak flow dependence on the dimensionless 
theological properties are plotted as functions of 
modified shear rate. In general shear thinning rate in- 
creases as h increases, which is uf reverse tendency 
predicted in case of bead-bead hydrodynamic interac- 
tion[7]. When ~ is 0.75, hydrodynamic interaction 
oecreased the shear thinning effect, though. 

E L A S T I C  D U M B B E L L  M O D E L  

Kinetic equation with preaveraged hydrodynamic 
interaction can be derived for elastic dumbbell model 
polymer from the force balance of each bead. 

___. 2K ,, 1 Ox~b+ 1 Oy~b 
O~ I v7cF ' r ' )  ,O . . . . . . .  
Ot = - g'o 'D,  Ox I)~ ~)y 

1 Oz,O 2kT 1 O ' ~ 4  1 O=r 
D ,  Oz  ) ~'0 D,  ~ x  2 D~ Oy= 

Korean J. C h . E . ( V o l . 4 ,  N o . l )  
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1. 
o 
u 

I 

I 

..~. 9~ .1 
.2 

�9 . i .'6 - . - g - - - r .  

ii 

% 

95 

h o 0 

.2 .2 

�9 . 1'. 
,8 

Fig.  5. (a) Dimensionless  viscosity and (b) First  

Normal Stress  Coeff ic ient  as  funct ions  of 
shear rate for R . D . ( F r o m  the bottom, e 
= 1 . 2 5 ,  e =0.  75, ~ = 0 . 0  respectively).  

1 8'r kT ( 1 O'~b 1 0 ~  

1 0 ' 0  
§  ~ z ~  2) = 0 (47) 

subject to 
Specifically for steady simple shear flow between two 
parallel plates, it can be simplified into dZ~ 

8 ~  1 8x~b 1 Oz~b 1 O~4J 
~ z ~ -  ~ (o~-  - t+~-7 Oz ) - ~  ( Ox' 

1 O'~b t- 1 r ~ ,0, 
+ l - ~ ' O z '  4(1+x) ~z~z ' j = ~  (48~) 

with 

_er/, a~cj_ az f2axr (48l) 

c3~k 1 r 
2zr . . . . .  0 

Oz 2 Oz~ 

at z=2zc  + ~ (48c) 
2~ 

2 z ~ + C q ~ _ _ _  1 . O ' k =  0 
8z  2 c'3z~ 

Vg 
at z = - 2 z e ~ - -  2'~ (48d) 

t = - ~ -  2 IZc I 48el 

where length was scaled by (2kTIK)l.'2t{l-%h], with 
c) . h=d/ /andeo=(6X, . /3 .  1~.~ Characteristic time 3.,. is 

defined by ~'0/4K and 3.c=~'ol2/2kT. Dimensionless 
shear strength l? is defined by a r >/4K and 
anisotropic factor 3. is defined by (D3-D1)/D1 and 
e = %/(l-~0b). Solution for no flow has exactly same 
form as before [11. 

~b~=0 =(21 e . . . . . . . .  (49) 
/ r  

where C1= l/[2a erf(2a)+{ exp(-4a2)-l}/,'r ] (50a) 

a=  ~/~"/4~ /50b) 

And the probability distribution of center of mass 
given by the following will not be changed by the 
presence of a one-.dimensional flow along x direction. 

f ; d z f ~ d x  r  erf (~) (51) C(z~) 

Therefore if we assume 4, (x, z/z~ ) as following 

,O (x, z/z~) = ~ ,8'~r (x, z) (52) 
k = o  

O~ (x, z ; ,~ ) can be expressed as following. 

o~ (x, z;),)=:H~ (x)Z~ (z;).)exp[~- (x2+z2)] (53) 

Here H~(x) is kth order Hermite polinomial, Equa- 
tion for Za(z; 3.) is 

dz ~d2Z~ 2z ~ z ~ -  2 k ( l + 3 . ) Z ~ = -  4 (1+ 3 . ) z Z , ~ .  _~(54a) 

- - = 0  al z = l t l  (54b3 
dz 

Z0(z; 3. ) and Z] (z;,~) for integer A are solved explicitly. 

Z0 ( z ; A ) = C , / n  ',55) 

C, (1§ ~) Z, (z ;2 , )= [z+exp(z  ~ - t  z) 
(14 i / 2  ) 

O~ (t) 
Ea ~ (tl -2tOz. (1)) [156) 

Here O~(t) and En{t) are odd and even parts of i ~1 
erfc(t) [9], the repeated integral of the complementary 
error function. Because of the orthogonality of Hermite 
polynomial, we only need the following 4 integrals for 
the numerical calculation of the rheo[ogical properties 
of E.D.. 

/ : Z 0 e x p ( - - z ' ) d . z ,  f l z 0 z ' e x p (  z ' )dz,  

f l Z , z  e x p ( - z ' ) d z  and / 2 Z , e x p ( - z : ' ) d z  

March, 1987 
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And as shown before, the last two integrals are iden- 
tical for any ;, , Z 0 and Z1 obtained by equations (55) 
and (56) are enough for Ihe evaluation of the 
rheological properties. The results are 

!-5-7--~) . . . .  -~ '  = 12 /'~adt < x z / z c  > 

because 

< x z / z ~ , > = ~ -  1~2~,/2 ~ - e r f  t'l 

- texp ( -  t 2 ! / 2 + e x p (  - t ~ ) 

r tE~,, (t) +O.,. ,.~ it) 
] i (58a) 

LPtO~,l,t)-g,,, ~(t) 

<x~ /Zc>  - C ~ e r f l t )  ~2: ,8<xz/z~> (58l)/ 

2t 
< z ~ / z c >  - C~ [erf  (t) -- ~ e x p ( -  t~)] (58c) 

In orcier to evaluate D~ andX, we need the bead con- 
centra.tion profile at equilibrium. 

C(z,)--C, [ e r f ( a - z ~ ) - t - e r f ( a ~ z ~ } ]  (59) 

Then we have 

< ] . /D, > . . . .  ~r h f ' , ~ ' "  
4 . 

erf  ( # -  t) § 
dt 

V-6h ;~6ht 

2< 4 

C, (t)~, ( 2  ~h - t )  
(60) 

',57 ;, 

<I/D:~> can be obtained from _~3(t) instead of {h(t). 
>. and 1/<l/D~>are plotted in Figure 6 as a parameter h 

varies. It is interesting that the limiting case of infinity 
could be analyzed. In this case E,~(t) and O,(t) are too 

small compared with eft(t) or exp(-t 2) so that we can 
predict the approximate behavior of dimensionless 
viscosity. Results are 

2.5 t b, ~, ~._____.__.--~ 

h= .  1 

_ ~  c, h = .  l 

. 0  i i 

.0 L 2. 2.5 
E 

F i g .  6. (a )  X a n d  (b)  1 / < I / D j  > a s  a f u n c t i o n  

o f  r w i t h  t h e  p a r a m e t e r  h f o r  R . D .  

1.2 

.0 i 

Fig. 7. 

i. 2. 2.5 
e 

D i m e n s i o n l e s s  v i s c o s i t y  or  Fi rs t  Normal 

S t ress  Coefficient  at  zero shear  r a t e  

normalized by those of no boundary as 

funct ions of ~ with parameter  h(From 

the bottom, h 0.0, 0.1, 0.2 and the top 

o n e  is  f o r  the case of infini te  ~ ) .  

, 2~-g  
, , 1 -  3~,-- E 

t ...... ~ .... ) (6la) 
- %,'6 

(n - n.~) l 
(: >> 1 ~ ........... : . . . . . . .  {61b) 

(r] - -  r?,,.)~ 0 ~2 

Equation (61a) is not mucll meaningful because when 
approaches to zero, anisotropy number ;t can be large 
so that there should be little effect ol l  the rheological 
properties. But it still tells us that there should be 

limitation on the increase in zero-shear properties even 
when anisotropy factor increases tremendously. On the 
other band, the equation (61b) tells us that if the chan- 
nel gap is small enough to give us large anisotropy 
number, then there is no difference between R.D. and 
E.D. as far as the size effect on the rheological proper- 
ties are concerned. No flow dependence is detected for 
E.D. model as same as before [1]. Dimensionless 
viscosity and first normal stress difference coefficient 
are plotted in Figure 7 with the parameters 3, and h. 
For the actual rbeological properties interpolation 
would give the similar size effect shown in Figure 3 for 
R.D.. 

N O M E N C L A T U R E  

A 

Ai  

a~ ,i~ ) 

b k f ~ )  

a diagonal tensor defined by .~r ~- ~_r, ~ 

_~ i n)~ 12 

a diagonal e lement of tensor A ( i=  l, 
2 o r 3 )  
a funct ion def ined in the text 
a function def ined in the text 

K o r e a n  J .  C h . E . ( V o l . 4 ,  N o . l )  
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B_ 

B~ 

B, i<h)  
c~{{) 

C n 

Ci 
C{zi) 
D~ 
D< 
d 
E{k,i, j} 

E,~{t} 
f({ ,h) 
Fl(eh) 
g~(~)  
G ,dl,: ,t) 
h 
H. {x) 
kT 
KL,~, { t }  
L 
/ 
I'lo 

O(k,i,j) 

O.(I} 

P,7 

D 

Sm 

S, 
to 
Vi 

W1,W2, W:3 
x,y,z 

Xc, y{, Zc 

Zo, Z1, Z2 

a diagonal tensor defined by ? 'r ,  : - 

a diagonal dement  of tensor B ! i -  1, 

2 or 3 :  
a function defined in text i -  1 or 2 i 

a function defined in the text 
cos[m ~ I 
cos (he; 

constant defined by equation (50a) 
bead concentration profile 
rotational diffusivity of R.D. 
A,-B:/ /Ai  
diameter of bead 
coefficients of basic distribution func- 
tion 
even paris of i" erfc(t) 
a function defined in ttle lext 
a function defined in tile lext 
a function defined in the text 
a function defined in the text 
dlL 
the Hermite polynoniials 
Boltzman temperature 
a function defined in the text 
length of R.D. 
channel gap of the boundaries 
number concentration of polymer 
coefficients of basic distribution func- 
tion 
odd parts of i,, erfc(t) 
an associated Legendre polynomial 
position vector of a bead ( j= 1 or 2 ) 
position vector of center of mass of R.D 
defined by (_n +_r2)/2 
configuration vector of R.D. defined by 
D-rl  
sin[m 61 
sin{n r ] 
(l/2-zl)/{ 
velocity vector of the posilion where a 
bead is located ( j= l or 2 i 
functions defined in Appendix 
the element of configuration vector rin 
Carteasan coordinate 
the element of position vector of center 
of mass r<- in Carteasan coordinate 
functions defined in the text 

Greek Letters 
=F : homogeneous velocity gradient tensor 
A " operator defined in the text 
~'2 : operator defined in the text 

: basic function of the orientation 
distribution function calculated on tile 

r 

~ o  

{o 

= 

q - q s  
fl 
~ s  

0 

X 
Xp, A~ 

basis of flow strength 
first normal stress coefficient 
orientation distribution function 
unit vector in 6 

unit vector in r 
strength of a shear flow 
dimensionless shear strength 
dimensionless parameter detined by, 
U/  
dimensionless parameter detiued by 
~ot(1- ~0h} 
Stoke's friction factor of a bead 
friction tensor normalized by Stoke's 
friction factor 
contribution of polymer in viscosity 
viscosity of solution 
viscosity of solvent 
an angle coordinate in spherical coor- 
dinate system 
an azimuth angle in spherical coc:- 
dinate 
anisotropy number in friction of bead 
characteristic time constants defined in 
the text 
time derivative 

Subscripts 
/ 3 = 0  
~ = 0  
< > 

refers to the case of no flow 
refers to the case of no boundary' 
refers to the averaged quantity over all 
possible configuration 

APPENDIX 

Basic functions for equation (19) are following. 

~0 = 1 {A1) 

1+ ;t 1 
~ '  14 A / 2 ( 6  P~C')  {A2, 

i~;~ ( 1 p o +  1 
i f} '  1 + ; , / 2  2 8  7(} p~  

1-+ A 
4- ~(54 x )P#C,  

8 4 ( 2 + i )  t 3+X)  

3~ 2A }2 
+ ~--~, c2] , ,,\:~ 

ff}~ W , ( A ) P ~ C , 4 W , ( ~ ) I } ~ C , - \ ' V , ( A ) P ~ C ,  

+C3 terms 'A I  

where 

W, (it) 
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1 Zi 35, ~- 1582 ~-2293Z~i  7818}, +;5840) 

(AS) 

i1~ A' ,( l lA 3 "401A~42925Z 15274) 
1540 (2 t X} , ~  3,) (12+ 1) (30 t ;~) 

(A6 
!1§ Z) (45 4-23A i 
138B(2+1) (3 :  ,~;(30+A) 

P',f' 's are the associates Legendre polynomials defined 
in [1] and C,, denotes cos(m4) as before. One remack 
for these solution is that as A grows to infintiy only 
W~( X I goes to zero. 
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