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Abstract—As a continualion of the previous paper, dynamics of rigid and flexible polymer chains in
viscuus tediunt was reexamined in order to include the interaction of boundary and polynier chains. As
mudels for rigid and flexible chains, rigid and linear elastic dumbbells were considered, which are essential-
ly compuosed of two beads of frictional svurces. The orientation distribution function was obtained by in-
cluding anisulropic diffusivities of the bead due to the presence of the walls, and rhevlogical properties were
predicted to give us the dependence on an additional parameter, €.h relative size of bead to the gap width,
as expected. Dynamics of flexible polymer chains showed a similar dependence on the relative size of bead.
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but exhibiled nv dependence on the shear rate as the case of no boundaries.

INTRODUCTION

In the previous paper (11, dynamics of rigid and
flexible polvmer chains in viscous Newtonian fluid was
presented in case of simple shear flow between two
parallel plates, and applied to obtain the rheological
properties of such solution for any size of channel gap
compared with that of polymer chains. One of most im-
portant feature of Rigid Dumbbell(hereafter called R.D.)
solution in that paper is that a distribution function
which describes the motion of R.D. polymer chain can
be constructed from the unbounded distribution func-
tion when no boundary exists.

At that time, however, the boundaries were simply
taken as a solid wall through which both solvent and
polvmer can not penetrate so that there assumed nc
change in flow characteristic after introducing the
boundaries. It is well-known, however, that such boun-
daries alter the diffusivity of the finite size of particles
due fo the change of friction exerted by tluid. Hydro-
dyramics [2,3,4, and 3] tells us that the frictional force
exerted by fluid rises up tremendously as a particle ap-
proaches boundaries. Furthermore, there would be an
anisotropic increase of such frictional drag when a par-
ticle moves toward the boundary or aiong it. This
anisotropy can cause new kind of dynamics as far as
polymer is concerned.

This phenomenon is called “wall-bead hydrodyna-
mic interaction”. It is possible to consider another kind
of hydrodynamic interaction if we deal with the finite

size of bead of which polymer chains are composed.
That is the bead-bead interaction which was extensive-
ly studied by from Kirkwood [6] to Bird et al.{7] in case
of unbounded media. and it made the shear thinning
rate in the rheological properties less than that of no in-
teraction and decreased the flow effect by increasing
the relaxation time of R.D.. This interaction can be
characterized by the relative length of R.D.

h=d/L (1)

where d is diameter of bead and L is length of R.D.. As
a first approximation, interaction effect is of order h
when b is small enough. On the other hand, wall-bead
interaction can be characterized by the factor how often
the polymer chain can be located near the boundary,
because in that region the frictional force increases
tremendously. This factor can be quantitized by h and
€

e, =L// 2)

where [ is channel gap of the boundaries. It turned out
that for small €;h the interaction effect in averaged dif-
fusivity of the polymer chain is of order eh In(eh)
which is greater than order of e,h. Therefore bead-bead
interaction can be neglected if €,is greater than unity.
Furthermore if €, is not too small compared to 1, then
wall-bead inte-action could be dominant, provided that
h is small. In this paper, { will restrict myself to the topic
of wall-bead interaction by ignoring bead-bead interac-
tion entirely. In chapter I, kinetic theory for R.D. model
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polymer in confined geometries will be developed and
then applied to the specific case namely the case of sim-
ple shear flow between two parallel plates. [n chapter
IL. anisotropic factor will be determined in the sense of
preaveraging by utilizing the hydrodynamic results
about the frictional drag near the wall. After discussing
the results of R.D., in chapter IV, Linear Elastic Dumb-
bell(hereafter called as E.D ) will be analyzed with the
same line used before [11].

KINETIC EQUATION FOR R.D.

The model used here is that of rigid dumbbell pic-
tured in Figure 1 which was the same as used before
[1]. The only difference arises from the factor that each
bead has a finite size so that it allowes us to consider
the wall-bead hydrodynamic interaction effect. The
kinetic equation for the orientation distribution func-
tion which governs the motion of R.D. chain can be
derived from the force balances to exerted to each bead
by neglecting acceleration terms.

0=§(§;)(E,—\_’,)+E§‘1V_,Jlx1(/z for j=1,2 (3)
- 0

Here{(r,, is a diagonal tensor in general which is non-
dimensionalized by where &.is a the Stoke’s friction
factor, and v, is a bead velocity which is determined
by the macroscopic velocity field. r,'s are the position
vectors of each bead. kT is the Boltzman temperature.
After defining A = (£ (r,)—¢(r,) /2 andB={(r.}
-¢r.)and assuming the homogeneous velocity field
I, the following sets of equation can be derived.
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Fig. 1. The rigid dumbbell model.
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Bire— LCrei +[Alc—-Tor) - Lt, aa]”;’ =0 (5)

. ]
LiS o¢
6)
where r.= (r, *r,)/2 and r=r.—ry and S and C
denote sing and cos¢ respectively, and small s and ¢
will denote sing and cusé later. 8, and §, and the unit
vectors along 6 and ¢ direction, respectively. Once
we have 4 and ¢ from equations (5) and (6) and £
from equation (4), it is easy to construct the kinetic
equation for RD. from the conservation of probability
in space where polymer chains can be located.
¢, 1 ais6¢) aidy) 9icy
ot s a6 3¢  orc

0 (7)

Details are the same as in the textbook of Bird et al. [8].
It is hard to obtain §, ¢ and f. in general from the
equation (4)(6). Now let us apply to the specific case,
namely, the case of simple shear flow between two
parallel plates as shown in Figure 2. External flow field
is given by the following velocity gradient tensor.

/0 0 1
I'=ea 0 0 0> (8)

_\000

Then we have

5 = ac’C D, 1 3lng
1+As® D, 1+is® 28
BJ Dr 1 8ln(//
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“4A, D, 1+ist oz. 9)
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¢ S Ts'D, as (10)
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where D,=A-B}, Dy=A,B’ and A =(D;-D,)/D;. A,
and B, are the diagonal elements of tensor A and B, and
D, turned out to be the harmonic averages of the
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Fig. 2. The flow geometry.
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diagonal elements of {(r,)and {(r.). Dris the rotational
diffusivity of R.D. which is given by 2kT/¢,L.? can be
called the anisotropic factor in the diffusivity. By in-
troducing the concept of preaveraging, Bs terms can be
neglected and then after integrating over x,.and y,, we
have

3¢ ; . & 3ty o
-aTA,gg(w—A () -- FENP =0 (12}
22C o cS o9
't =° LA e
whete =777 %6 s a4
_ 3= A)esCll+As?/3) .
(1+As)? (13}
1 2 . s o . 1 8 .
= — ( . —) — .= !
A= g it ae T s 2¢° 14
ﬁ:_a% (13)
D,<1/D, > ”

subject to the no flux boundary condition of each bead
and the normalization condition of the total probability.
One different thing is that length was scaled by
the “actor {1-€,h) further than before [1]. So hereafter e
means €,/(1-€,h). This is the simply the extrusion ef-
fect of bead. Normalization condition looks like exactly
same as before except modified definition of.

Lig)=1 (16)
1 1R 4 1 ty 2
1= 1- f dt : f f
€) . j: d¢+¢[ dt _Mdt A d¢
€=] a7;

:e;[dtoﬂ:dt]:"dga e>1 (18)

For steady simple shear flow we have already known
that z. dependence can be neglected with the no-flux
boundary condition with the same argument used
before [1]. It means that the wall can be felt by polymer
chains only when they reach the wall provided that no
adsorption of polymer occurs on the wall  Solution of
equation (12) can be expressed as following

68, 9. 20)=gaofle, f) £ 5 0 (19)
where
1 ‘
b= - <=
=T e<1 20)
< >1 1)
_ . . 0
2r
and
fle.f)=1/0t L a(1) g™ es1  @2)

o

=2 g, le)g™* €e>1 123

k=0
a, (1) and g, (e) are given by equation (26) and
(30)(31), later.
The basic solution ¢ has a general form as follow-
ing.

K+l 2K+t P
o= % 3 Eki)PEIC, . 2
=1 j=¢
K+l 2K+1 P .
Dog. = Z‘ 2‘ 0(](,],]) ngljz 21 251
i=1 =

where the coefficients E(k,1,j) and O(k,i,j) are now func-
tions of A . First four ¢ s are given in Appendix for
reference. We can use the same definition of a,(e),
b€}, cile), K.’_,’g,, »(€) and g{ e} of the previous paper by
using the modified definition of ¢

ace)=F Eh L KL ate) 26)
2K41 ) .

bk(6>:£1 Ek1,1)K3 4, »l€) 27)
2K+1 - | \

exle)=3" 001Kl €] (28)

18 [
Kfqur(f):e’f dta/ dtPy, (OPH (1) 29)
o )

) x )
gk(6)=—§ ax_,.1 €)g,., (6] k21 (30)

gole)=1 31)

Then it is straightforward to obtain the rheological
properties.

es=1 ,
(o __y  __ nokT 1-3e/4 32)
{9 = 1s) a0 8D,<1/D.> 1-e/2
(= 7s) 1 = e
e =f (e, f) 1+ X [ax(l)
(77_773)5=0 (e s 1—3e/4x:1[2 x
+g%—-€~)E(k,1.2)»+ebx('l)],g“‘}
(33}
1 kT +A — )
Gbmo Do 1 1-5¢/8 .

T30DI<1/D,>° 14472 1-€/2

o’ 142 1 -
.__._=f —_——
o e B T T s /8 W

6(1—€) Ok 1,1)+5eck (1)) (35)

e=1

no kT 1
6D,<1/D,> 2¢?

(n=ns)e-0= (36)
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M0 _9et iofle. §) 5 byle pt]
= ns)a-e k=1
i37)
Oh nekT . 1+ A . (i_i
#70 30DI<1/D,\ > 1 A/2  4e? Zet
(38
iljil; )r C'C(e' 2k / N
. (e. )1+ 5, " prar ) (39)

Therefore it is clear that in order to consider the
wall-bead interaction effect, we need modified concept
of € with h, A , and Dy. These A and D1 are also func-
tions of ¢ and h so that in fact we need only one addi-
tional parameter h like the case of bead-bead interac-
tion. Next chapter will be devoted to determine A and
D, for given € and h.

A AND D: FOR R.D.

For the preaveraging friction factor, the bead con-
centration profile and the functional form of frictional
factor are needed. From the distribution function given
in equation (19), bead concentration profile can be easi-
ly obtained.

€e=1/2
for 1/2~¢ §121|§_1/2

(e x . .
C(zll_fz [1+to g‘ﬂ”Gk(to;A)] (40a)
for 0 =|z,|=1/2— ¢
Clzy = HEA) (40b}
2—€
125 =1
for 0 =jz,|=€e-1/2
Clz) = (; BlE g Gltin)
~Grlty=1/€:A)] {40c)

for e—-1/2=z,1=1/2

fle., ‘9 (11t £ A7Galtei 1)) 40d)

Clz,)= 5

e=1

Clz)=e*fle, 8115 A™(Gy (to3A)
—Grlto—1/€5A) 01 (40e)
where €t,=1/2—2z, and
t 2k+1 . N ;
Gelt;A) = A dt 3 Ek1,j)P;3, _,(t) (41)
For the mathematical simplicity, the equilibrium profile

was used here so that it would be said to be “equilibri-
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Table. 1. Dimensionless force on a sphere moving

parallel to a plane wall [3,4].

: ISRV eq. 42a) eq. 142b)
9. 0677 1. 0591 - 1. 0592
2.7622 1.1738 - 1. 1758
1. 3524 1. 3079 - 1.3143
0. 5431 1. 5675 L. 2844 1. 5736
0. 1276 2.1514 2. 0569 1. 9954
0. 0453 2.6475 2.6092 2. 1651
0. 0050 3. 7863 3.7841 2.2772
0. 0032 4. 0223 4. 0223 2. 2857

um averaged hydrodynamic interaction”. In qualitative
sense, it could give the right answer. Next thing we
need is the specific friction factor. Brenner et al. [2,3 4,
and 5] reported the variable friction factor for the single
sphere near a solid boundary in their series of papers.
The results were quoted here in Table 1 and Table 2
Both exact results and approximate values obtained the
following formulars are tabulated and for the computa-
tional purpose the following functions were chosen for
each case.

&)= —%ln& +0. 9588 £=0.157 (42a)

9
£ (8)= 71/[1—@1*5

£, (E)=1/£+0.2In(1/¢&)

] £>0.157 (42b)

+0.9713
£=1.839 (43a)

Table 2. Dimensionless force on a sphere mo -
ving perpendicular to a plane wall (2,
5).

£ L8 eq. i43a) eq. (43b)

9. 0677 1. 1253 - 1. 1258

5. 1323 1. 2220 - 1.2247

2.7622 1.4129 - 1. 4266

1.3624 1. 8375 - 1. 9166

0. 5431 3.0361 2.9347 -

0. 1276 9.2518 9. 2201 -

0. 0201 51. 594 51. 500 -

0. 0050 201. 86 202,57 -

0. 0013 802. 15 802. 31 -

£ is relative gap between bead and plane wall divid-
ed by the diameter of the bead.
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9
. L1 - 2y 1A
e =1/11 8"1*'E?’J £>1.839 (43b)
Here direction *1” means x direction parallel to the
boundary and “3" means the perpendicular direction z.
Since two beads are identical,

<1/D,>=<1/¢, (z,) > (44a)
L1/Dy> = <1/ g5 () > i44b!

Here << > means an average over all possible configura-
tions of polymer chains. And we have two walls to be
considered, so that we simply assumed that the effects
due to two walls could be multiplied to give us the
who e effects. Then we have the following expression
for < VD, > and < 1/D,; > which can b integrated
unmerically.

e <1/2
<1/D,>=F, (eh)/(1-€e/2i—€eB,(e hi/l2—€)
45a)
1/25e =1
<UD, > =T (eh) /e Gme))= 5
B, (e, h)—B,le h) {45h)
1<«
<1/D,>=1"(eh) 45¢)
where
F, (x)f% i d"[;,<,\7§?1"z§'x—>v> 46a)

h [#h 2—hy .
i Yo = Y {
Biore. b 2 ﬁ d“gl{y)gl(Zeh—y;) -

2—hy .
v e el
oyl (Zeh—yo

Now it is clear that we need one more parameter h in
orde- to consider the wall-bead interaction effect. <1/
D,> can be oblained by similar method with £s(y)in-
stead of &yl

RESULTS FOR R.D.

Wall hydrodynamic effect in diffusivity is calculated
numerically and plotted in Figure 3 in forms of
/<D >, 1i<l/D, > and A. As expected. A is an in-
creasing function of , and in both h = 0.1 0.2 linear rela-
tionship between A and e holds as shown in Figure 3.
Relalive size effect on zero shear viscosity is plotted in
Figure 4. One maximum is predicted near €= 1.1t is due
to the increase of the frictional resistance exerted by fluid

with the presence of the wall, and anisotropy A is also
responsible for the increase of zero shear properties.

I~

Fig.3. (a)1/<1/D,>.(b)1/<1/D,>. and (c) A
as functions of € with the parameter h
for R.D..

. (a)First Normal Stress Coefficient and
(b) Shear Viscosity at zero-shear rate
normalized by those with no boundary
as functions of ¢ with parameter h for
R.D..

Both viscosity and first normal stress difference have
substantial dependence on the relative thinkness(here
h) of polymer chains compared with their length. In
Figure 5, weak flow dependence on the dimensionless
rheological properties are plotted as functions of
modified shear rate. In general shear thinning rate in-
creases as h increases, which is of reverse tendency
predicted in case of bead-bead hydrodynamic interac-
tion[7]. When € is 0.75, hydrodynamic interaction
decreased the shear thinning effect, though.

ELASTIC DUMBBELL MODEL
Kinetic equation with preaveraged hydrodynamic

interaction can be derived for elastic dumbbell model
polymer from the force balance of each bead.

O | iy, 2K 1 oxg 1 9y¢
o VLTS 5k D, oy
L1 g, AT 1 5, 1 2%
D3 oz Zo Dl axz Dg ayz

Korean J. Ch. E.{ Vol. 4, No. 1)
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P2 o= =

(n=mns)/n—ns)s=0

95 ) )
.2 4 .6 .8 1.
y-4
Fig.5. (a) Dimensionless viscosity and (b} First
Normal Stress Cocfficient as functions of
shear rate for R.D.{From the bottom, €
=1.25, € =0.75, € =0. 0 respectively).
2 2 ~2
+,L 3 ¢’) _g_ __1_ 2 ‘/’+_1 E',,‘éz
D, 2z® 2¢{ D, ax! D, ay/
2
+ 24y (47)

D, 9z/

Specifically for steady simple shear flow between two
parallel plates, it can be simplified into

8z 29 _ L ox_ 1 9z2¢, _1,9%
2z 2 'ax 1+A 2z 4 ax?
1 2% 1 2%, _ N
TIA e Trar ) en 0 (8a)

with
‘{—/45
J_Mdz f dz f dxg =1 (48b)
°¢_1 2¢ _
22¢+8 2 9Oz 0
at z=%2z.% y—g 48¢)
2€
8¢ 1 3¢ _
2z¢+ 2 9 3., 0
ey o VB
at z Ze= o (48d)

March, 1987

rJZ——ZIzCI (48e)
where length was scaled by (2kT/K)%/[1-¢,h], with
h=d/! and e,=(6A /A )", Characteristic time A, is
defined by ¢,/4K and A.=¢,1%/2kT. Dimensionless
shear strength g is defined by @ £e<D,>/4K and
anisotropic factor A is defined by (Ds3-Di1)/D1 and

€ =¢€,/(1-€yh). Solution for no flow has exactly same
form as before [1].

C - )
Gao=—Te T 49)
b4
where C1 = 1/[2a erf(2a)+ { exp(-4a?)-1}/ x] (50a)
a==\V'6 /1e (50b)

And the probability distribution of center of mass
given by the following will not be changed by the
presence of a one-dimensional flow along x direction.

Clzd= [Tdr [Tax g=C, exf ) 51)
Therefore if we assume ¢ (x,2/2.) as following

¢ (x,2/2)0= E B gy (x7) (52)
¢x(x,z; 1) can be expressed as following.

¢rlx,z;A) =Hyp (%) Zx (23 1) exp(— (x*+2%)] (53)

Here H,(x) is kth order Hermite polinomial. Equa-
tion for Z,(z; A) is

4’z Z

Iz—’“—b%i—zkuﬂ)z =-4(1+ )27, (54a)
subject to

Ccf”=0 at z=t] (54b)

Zyz; A ) and Z, (z A for integer A are solved explicitly.

Zyz;A)=C,/x {(55)
L, Cld+a) e s
Z, (z;A) T2 /\/2’)[2+exp (z?=1t%)
0, (1) N
Er (0 210, (1) ) (56)

Here O (t) and E(t) are odd and even parts of i
erfc(t) [9], the repeated integral of the complementary
error function. Because of the orthogonality of Hermite
polynornial, we only need the following 4 integrals for
the numerical calculation of the rheological properties
of E.D..

t t
f Zoexp (—z)dz, f Zoztexp(—2%)dz
-t —t

t H
f Z,z exp{—2z%)dz and f Zyexp(—2z*)dz
,t -t
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And as shown before, the last two integrals are iden-
tical for any A , Z, and Z, obtained by equations (55)
and (56) are enough for the evaluation of the
rheological properties. The results are
s ¢l 2

~2a
. = dt <xz/z.> 577
b, = nsie-o d’le;-.o A J/O ¢

{

because
. 26C, 1-A Nm
< o> =t 2 T
xz/z.> Vi 12 erf(t)
—texp(—t*) /2+exp(—t%)
B (404, (1) .
Y210, (0 —Ea, m]% )
<xHfz.>=-Cierfit] —28<xz/z7.> (58b)

<z ze>=-C,(erfit) - %—exp(— 1%1)  (58¢)

In orcier to evaluate D1 and A | we need the bead con-
centretion profile at equilibrium.
Clz,)=C,lerfla—z,)terfla—z,}) 59)

Then we have

V'gh ‘ Véh Véht
H et -
dt 5 £ -
& (L)Zl (E_}l——[)

60)

<1/D3> can be obtained from ¢ s(t) instead of &i(t).
Aand 1/<3/D,>are plotted in Figure 6 as a parameter h
varies. It is interesting that the limiting case of infinity
A could be analyzed. In this case EAt) and O«(t) are too
small compared with erf(t) or exp(-t?) so that we can
predict the approximate behavior of dimensionless
viscosity. Results are

[$+
o

‘l_%’—’:’/’_-_y:h I
L0l " N -

Fig.6. (a) A and (b) 1/<1/D,> as a function
of € with the parameter h for R.D.

0t
~
] 9 ~ N \ h=.0 1 2
I AN
[~ ‘-\\ N . \_\
._\ \. b
\\.\ N S
Nl Te—
0 —— ———
.0 1. 2. 2.5
€

Fig. 7. Dimensionless viscosity or First Normal
Stress Coefficient at zero shear rate
normalized by those of no boundary as
functions of € with parameter h(From
the bottom, h=0.0, 0.1, 0. 2 and the top

one is for the case of infinite A).

2V6
~p) s
e =y (2R 6la)
(7= 7nsle-o _ /6 ¢
Wr
(n =7,
esq Tasl 1 (61b)

n=nsleca €

Equation (61a) is not much meaningful because when
approaches to zero, anisotropy number A can be large
so that there should be little effect on the rheological
properties. But it still tells us that there should be
limitation on the increase in zero-shear properties even
when anisotropy factor increases tremendousty. On the
other hand, the equation (61b) tells us that if the chan-
nel gap is small enough to give us large anisotropy
number, then there is no difference between R.D. and
E.D. as far as the size effect on the rheological proper-
ties are concerned. No flow dependence is detected for
E.D. model as same as before [1]. Dimensionless
viscosity and first normal stress difference coefficient
are plotted in Figure 7 with the parameters A and h.
For the actual rheological properties interpolation
would give the similar size effect shown in Figure 3 for
R.D..

NOMENCLATURE
A a diagonal tensor defined by 1§ (r,)
A; : a diagonal element of tensor A (i=1,
2or3)
ayi€) a function defined in the text
b, (€] a function defined in the text

Korean J. Ch. E.(Vol. 4, No. 1)
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B a diagonal tensor defined by ¢ ¢, - basis of flow strength
- - 1 .

{ L _ & first normal stress coefficient
B. : a diagonal element of tensor B i=1, ¢ orientation distribution function

2 or3; Fo unit vector in 8
B (€.h) . afunction defined intext “i=1or 2 8o unit vector in ¢
cxl€) - a function defined in the text @ strength of a shear flow
Cn : coslmgl s dimensionless shear strength
Cn D cosing €o dimensionless parameter defined by
Ci . constant defined by equation (50a) L{/ . .
Clzy) . bead concentration profile € dimensionless parameter defined by
D- : rotational diffusivity of R.1D. . “olll-& h). )
D, - A-BY/A, So Stoke’s friction factor of a bead
d 4 di,anlleter of bead g friction tensor normalized by Stoke's
E(k.i,j) . coefficients of basic distribution func- friction factor o

tion /A . contribution of polymer in viscosity
E. (1) © even parls of i erfc(t) 7 viscosity of solution
fle ,h) . a function defined in the lext s viscosity of solyent ) .
Fi(eh) - a function defined in the text 8 an angle coordinate in spherical coor-
g (e€) : a function defined in the text dmate. system . heri _
Ge{to: 1) . afunction defined in the text ¢ ‘?“ azimuth angle in spherical coc.-
h - d/L dinate
H, () . the Hermite polynomials A anisotropy number in friction of bead
KT - Boltzman temperature Ap, A . characteristic time constants defined in
Kiar(t) . a function defined in the text t.he text
L . length of R.D . time derivative
{ . channel gap of the boundaries N
Io : number concentration of polymer Subscripts
O(k.i,j) . coefficients of basic distribution func- #=0 + refers to the case of no flow

tion €=0 : refers to the case of no boundary
On (1) . odd parts of i" erfe(l) < > . refers to the averaged quantity over all
I . an associated Legendre polynomial possible configuration
I . position vector of abead ( j=1 or 2)
L position vector of center of mass of R.D APPENDIX

defined by (ti+r2)/2
r configuration vector of R.[D defined by Basic functions for equation (19) are following.

I-n
Sn : s?n[m&] .= 1 (Al
Se : sin(né] _
to : (1/2-z1)e ¢l:_LQL, (iP;C,) (A2)
vy . velocity vector of the posilion where a 1424/2°6

bead is located ( j=1or 2 _

. . . . 7_A1L)L, (i >0 4 _1_ pe

Wi W., W3 functions defined in App.endlx . &, = 1ro/2os 2 700 )
XY,z . the element of configuration vector £in

Carteasan coordinate ’ H‘/\\ _ 5talPiC
Xe, Ve, Ze . the element of position vector of center 842+ A) 3+A)

of mass r. in Carteasan coordinate 349
Zo, 2, Z2 . functions defined in the text +,57A PiC,] TAY
Greek Letter ¢, =W, (A)P{CHW, QIPIC,— W, (AP C,
r . homogeneous velocity gradient tensor +C, terms Al
A . operator defined in the text
£ . operator defined in the text where
® . basic function of the arientation

distribution function calculated on the W, (A) =
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L3A - 158AS- 229347 § 78184 +6840)

9 AITS AT 124 A0 1304 )

-
(SRR

(A5)
1= AL 1A% - 401A°+ 29252 1 5274)

WM TS a0 3 2 e A B0 A)
(A6)

(1- A) 45+234 ,
W, (4) LA USEZIA (A7)

1386 2= A0 (35 43 30+ A}

Pm s are the associates Legendre polynomials defined
in [1] and Cm denotes cos(m¢ ) as before. One remurk
for these solution is that as A grows to infintiy only
W5( A ) goes to zero.
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